Hydra v1.0

System Architecture

Overview

October 25, 2004

1. Purpose:

This document provides an overview of the structure of Hydra v1.0 as it passes the 'feature complete' milestone. The intended audience is management as well as technical personnel for whom this will serve as an introduction the detailed sub-system documents.

2. Background:

Hydra v1.0 was designed in the context set by Buland and Benz. This calls for three major versions of Hydra:

1. v1.0, featuring:

a. a port of the current picker,

b. Glass,

c. DBMS-based processing,

d. prototype analyst displays

e. alarms and notification.

2. v2.0, featuring:

a. compeleted analyst interface,

b. integration of contributed hypocenters and phases,

c. integration of moment tensors, shake map, etc.

3. v3.0, featuring:

a. handling out-of-order trace data

b. archiving continuous waveforms

c. additional products.

Further, v1.0 design meets the requirements as set in "Interim Operations Center Requirements for Version 1.0, 2/12/2003", by Benz, Buland, and Johnson.

3. Overview:

The design consists of the major components shown below:

[image: image1.emf]Analyst Displays

Analyst Displays

State Processor

State Processor

Data Base

Real-time

Trace Data

Automatic Processing

Automatic

Hypocenters

Automatic

Phase Picks

State Processor

Hypocentral data

Additional parameters

Analyst Displays

Hypocentral

data

Passport

entries

Update messages

Event Summaries

Event Notifications

Engineering

Displays

Error Processing

Waveservers

Waveserver

Trace data

The overall hydra system consists of an automatic processing layer, a database, a state processor layer, analyst displays, engineering displays, waveserers, and an error processing subsystem. Each of these layers will be described in greater detail, starting now.
4. Automatic processing

The automatic processing side of hydra is set up using Earthworm-style protocols. This includes the modules needed in the “real-time” layer, such as the picker and associator (GLASS). There are also additional programs that take the output of these modules and stores it in the database (i.e. pick2ora and glevt2ora).
In a nutshell, the automatic processing layer received real-time trace data from NSN seismometers, determines any picks (and thereafter events) that are hidden in the trace data, then archives anything useful to the database. The automatic layer is not, as a rule, capable of going “back in time” and re-processing yesterday’s data; it’s always looking at the real-time data. (In truth, it is possible to hook up waveserver data instead of real-time data and re-process events, but this is only for debugging purposes; in the “real-life” model of hydra, we don’t do this.)
4.1 Picker
The picker’s job is to receive all the incoming trace data for all the channels the NEIC receives. It then determines if any incoming phases are on those channels. If a new pick is received, it will store the information for the pick in the database (via the pick2ora program).

4.2 GLASS
GLASS stands for GLobal ASSociator. Its role is to determine which picks coming from the picker are associated with which earthquakes. GLASS will both create new events and add incoming picks to existing events. If new picks are added to existing events, a new origin is created. It is also capable of deleteing events if it determines that an error was made with an earlier event creation. GLASS uses the program glevt2ora to write new origins and events to the database.
GLASS also contains a rudimentary locator that determines a preliminary location for an event. This location is further refined by the locator module running on the state processing side of hydra, described later.

5. Database

The hydra database is an Oracle 9i system. Standard Oracle API calls are used to add, modify, and (occasionally) delete data. The data stored in the database consists of nearly everything generated by the real-time and state-processing portions of hydra, as well as human-assisted changes made via the analyst displays. The only major data not stored in the databases is the actual wave data generated by the seismometors; this data is stored by the waveservers (more on them later).

6. State processing

The state processing side of hydra departs from Earthworm-style protocols, and instead encompasses the idea of passports. A passport is a collection of parameters for a given event. Prior to processing, any state processing modules will read the event passport from the database and extract any parameters it needs from that. In this way, a state processing module can keep its parameters up-to-date from a central location. It also provides us a mechanism for keeping track of parameter changes for a given event.
The state processing layer can keep processing and reprocessing an origin for an indefinite amount of time. As passport entries are changed, new origins can be created to incorporate them and the new origin can be reanalyzed. This all happens independantly of the real-time, automatic layer, which is presumably still looking at the current world situation and creating new events accordingly.

6.1 State manager

The state manager is the heart of the state-driven portion of hydra. Its job is to poll the DB every so often for origins in need of work. As origins work their way through the conveyor belt, the state manager is responsible for knowing the current state of any given origin and its next step in the conveyor. When a new state is scheduled, a state is started, or a state is completed, a record of this is added to the DB. A rough outline of the conveyor follows:
· New Glass origin (or new origin created via an analyst display) entered into DB

· Locator is run on the glass origin; the locator will then create a new origin.

· Magnitude calculators are run, in parallel if possible:
· Mb

· Ml

· Ms

· Mwp

· Metc

· For each completed magnitude, alarms are sent if necessary.

At several points along the conveyor belt, the state manager will insert “internal” states into the DB. These states don’t correspond to external commands executed by the state manager; rather, they’re hints to the state manager itself to perform some internal housekeeping. For instance, after every magnitude is completed (and alarms are sent, if need be), the state manager polls all other possible magnitude calculators to see if they’ve finished working on the same origin. If they have, then we know that the origin has been completed. A record of this is inserted into the DB, which other programs (most notably the displays) can make use of.
6.2 Locator

The locator further refines the location given to us by GLASS. The locator module is really just a front end for a Fortran executable created by Ray Buland (known internally as the “RayLocator”). Our module packages up an origin into a format the RayLocator understands (in a separate text file), then executes the RayLocator. When the RayLocator finishes, the locator module takes the result of that (in another text file) and writes the result to the database.
6.3 Magnitude calculators

As one might expect, the magnitude calculators are responsible for figuring out the various magnitudes of a given event. They generally do this by being given an origin ID to work with, then getting as much data from the database as is necessary to calculate a particular type of magnitude. In some cases, the calculator must get the ground motion data from the waveserver and make calculations based on this data. When this happens, the magnitude calculator will then store any relevant information in the database to make future calculations faster.
6.4 Alarms

The alarms module is used after a magnitude is computed to determine if alarm emails and pages should be sent to interested parties. As of version 1.0, alarms are in a very rudimentary stage and need to be developed further to make them more useful.

In the internal lingo of hydra, “alarms” refers to earthquake events of a large enough magnitude to warrant notifiying anyone not currently sitting in front of a display. “Notifications” refers to passing around internal hydra state messages, including error messages, so that hydra developers and maintainers can know what the current status of hydra is and what has recently gone wrong. It has come to my attention that outside of hydra, these two terms mean exactly the opposite: “Alarms” refers to “what’s gone wrong with the system”, and “notifications” means “telling people about the big quake that just happened”. We therefore may need to change our own internal nomenclature to match the larger NSN group. Or, we may not. In any case, this little quirk bears mentioning somewhere, so it gets mentioned here.
7. Waveservers

The waveservers store all the incoming trace data from the seismometer channels. They are currently divided into two types of waveservers: processing servers and display servers. The processing servers are typically faster than display waveservers in that its data is saved closer to real-time; the expense is that any arriving out-of-order data may not be included for a particular calculation. Processing servers are used by the real-time and state processing layers of hydra.
Display servers, on the other hand, delay writing out the trace data until it can be sure that any out-of-order data has been successfully received and placed in the correct order. This means that display servers are slower than processing servers, but more complete. Display servers are used by the analyst displays.

8. Error reporting
One key requirement of hydra is its ability to function 24/7 in a robust manner. To that end, hydra maintainers (and, if necessary, developers) need to be notified in a timely manner if anything goes awry. Therefore, a necessary component of hydra is its ability to report any hardware and software errors.
Errors are currently reported via a separate, dedicated subnet attached to all hydra computers. All hydra software components communicate errors, log messages, and debug messages via this subnet by UDP broadcasts.

8.1 Watchdog computer

The watchdog computer is a separate, dedicated machine that listens to UDP broadcasts from all the other hydra computers. It collects all the error or debug messages from other hydra components in one central place. The watchdog will then alert the Nagios framework (described below) if any fatal errors occur that need human attention.

8.2 Nagios / “hmon” computer

Nagios is a freeware system monitoring/reporting system designed for Linux. At the time, Nagios lives on a virtual Linux box running on the Watchdog computer (powered via Microsoft Virtual PC). This Linux “box” is named hmon. Nagios monitors the health of all the hydra computers (CPU load, disk space, memory, etc.) and also listens for any fatal errors reported by the Watchdog computer. Nagios will then generate web pages detailing the hydra status, and alert interested parties via email about any potential problems.
9. Notifications

In hydra, notifications serves the purpose of showing any displays (and any analysts wathcing those displays) what the current state of hydra is, and what the current state of an event is. Notifications occur over the public Internet connection on the hydra machines, so that (in theory) any display running anywhere in the USGS building will know of the current hydra state. (That is, if Multicast routers are ever set up within the building.) Although we could technically perform the same task by periodically polling the database, we use notifications to ease the burden on the database, particularly in the case of a large event that has many interested parties watching the system at the same time that a lot of reads/writes are already happening to the DB.
9.1 Notifier
The Notifier app resides on the database computer. Its job is to periodically poll the database for changes made to the state history table or to an event passport. If any changes are found, it sends out a Multicast packet describing the change. Displays can then update the data being displayed based on these packets. In essence, the Notifier eases the burden on the DB by having only one app poll the DB every so often, instead of multiple displays doing the polling.
10. Displays

There are two types of hydra displays: analyst displays and engineering displays. Analyst displays are, as you might guess, used by analysts in their jobs of “working” an event. They use these displays to examine all the data associated with a given event or origin, make any necessary changes, and re-process an event.
Engineering displays are used more by developers and maintainers than anyone else. They are used to show the current state of health of hydra, as well as examine engineering-level data regarding hydra.

10.1 Analyst displays

10.1.1 Map display

The map display is the main analyst display, and is the launch point for all the other displays. This display shows a large map of the entire world, with any recent events superimposed on it. The number of events displayed or the time period for these events is configurable. At the bottom of the display is a list which summarizes all the recent events that hydra knows about. By double-clicking on an event, the summary window is launched.

10.1.2 Summary window

This display shows more summary detail about an event than the map display. It is dedicated to showing the most recent origin for a given event. It also shows the current state of this event via a rotating smiley-face icon that was designed when the author was less mentally stable. The background color of this icon shows what the current processing state of this event is: red means that there is an event passport change that is not incorporated into the most recent origin; yellow means that the state processing engine is working on an origin that contains any recent passport changes; green means that all the processing is finished and the most recent origin contains any passport changes. The smiley-face rotates once each time a heartbeat indicator is received from the Notifier app, letting us know that we are still receiving state notifications. This whole mechanism for showing this information will probably change later, but for now it gives us a laugh.

The summary window display is the launch point for both the locator display and the magnitude display. In addition, there is an event passport display that shows all the current passport entries, along with who made the changes and when. There is also an event processing history display that shows all the processing steps that have occurred for a given event. These are all launched from this summary window.
10.1.3 Locator display
The locator display is used to examine an origin’s location in more detail, as well as all the data that went in to determining that location. The locator passport is shown, along with all the phases used to create a location and a plot showing all of the phase residuals vs. either distance or azimuth. Perhaps of most use to the analysts is a separate waveform display that shows the wave trace for each of the channels used to determine location. These wavefoms can be most helpful in determining if a pick is valid or not. In the future, analysts will also be able to perform pick editing using this display; new picks can be created, existing picks can be moved, and bogus picks can be deleted. Look for this exciting functionality post-1.0. The locator display allows analysts to make changes to the location by not using certain picks or changing the locator passport. Analysts can then tell the state processing engine to create a new origin based on these changes.
10.1.4 Magnitude display
The magnitude display shows information about each of the magnitudes associated with an origin. A series of buttons on one side allows the user to switch between magnitudes to view all the station amplitudes used to calculate a magnitude, as well as a given magnitude’s passport entries. As with the locator display, analysts can decide not to use selected amplitudes, or change the passport for a given magnitude. The state processing engine can then be told to re-calculate a new origin based on these changes.
10.2 Engineering displays

10.2.1 Error display

The error display is a bit of a misnomer; its job is to intercept any error, log, or debug messages generated anywhere in the hydra system and display them in one centralized location. All of the messages received are logged to disk, so that you can stroll back in time and view logs from yesterday, last week, or last month. The display can be told to only display error messages, or error and log messages, or error, log, and debug messages.
10.2.2 State display

The state display is similar to the event processing history display in that it shows the current status of events in hydra. It differs in that it shows all the states for all events within hydra (the other display only shows states that completed successfully; this display shows, for example, magnitude calculations that didn’t produce a magnitude.) It can also stroll back in time to see states that ran yesterday or last week. It gets its information from the database, where the entire state history for all events is stored.
_1160206872.vsd
text

State Processor

Automatic Processing

Data Base

Waveservers

Automatic Hypocenters

Waveserver Trace data

Automatic Phase Picks

Hypocentral data

Additional parameters

Event Summaries

Real-time
Trace Data

State Processor

State Processor

Analyst Displays

Analyst Displays

Analyst Displays

Hypocentral data

Passport entries

Update messages

Event Notifications

Engineering Displays

Error Processing

